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Ambiguities Appearing in the Study of Time-
Dependent Constants of Motion for the One-
Dimensional Harmonic Oscillator

G. Lopez'
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A family of time-dependent constants of motion for the one-dimensional harmonic
oscillator is derived. The relation between constants of motion, Lagrangian, and
Hamiltonian is described. A well-defined time-dependent Lagrangian (for which
Euler-Lagrange equations and Legendre transformation are fully satisfied) is not
uniquely determined.

1. INTRODUCTION

The concept of “constant of motion” has brought about important rela-
tions between the Lagrangian and the Hamiltonian formalism in classical
dynamical systems (Lopez, 1993a, b, 1996a; Lopez and Hernandez, 1987;
Dodonov et al., 1981; Goldstein, 1980) and has had application even in heat
conduction theory (Lopez, 1996b). A constant of motion for an autonomous
system [where the forces do not depend explicitly on time (Drazin, 1992)]
does not need to be time dependent. However, for nonautonomous systems
(where the forces depend explicitly on time), the constant of motion must
be time dependent. For Hamiltonian systems (Goldstein, 1980) one normally
does not worry whether or not the Hamiltonian should be a constant of
motion. The application of time-dependent Hamiltonians to the study of
classical and quantum harmonic oscillators has been rather extensive (Dekker,
1981, and references therein). Of particular interest in quantum mechanics
are one-dimensional systems (Zel’dovich, 1967; Man’ko and Haake, 1992;
Croxson, 1994; Camiz et al., 1971; Kim and Man’ko 1991), where an explic-
itly time-dependent Hamiltonian is used for different studies. This same
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Hamiltonian formalism has many attractions for the study of chaotic behavior
in classical (Chirikov, 1979) and quantum (Leyvraz and Seligman, 1992)
systems. In fact, one needs at least a one-dimensional nonautonomous system
(so-called 1.5 dynamical system) to see chaotic behavior (Ott, 1994). There-
fore, the constants of motion of one-dimensional nonautonomous systems
may be relevant to chaotic systems and to the relation among the concepts
“constant of motion,” “Lagrangian,” and “Hamiltonian.”

The relation among time-dependent constants of motion, Lagrangian, and
Hamiltonian for nonautonomous systems has already pointed out elsewhere
(Lopez and Hernandez, 1987). In this analysis the problem of a time-depen-
dent constant of motion for an autonomous system was also considered. The
present paper is focused on this last problem specifically for the classical
harmonic oscillator in one dimension.

2. TIME-DEPENDENT CONSTANT OF MOTION

The one-dimensional harmonic oscillator can be written as the dynami-
cal system

dx _ v (1a)

and
— = -0 (1b)

where o is the angular frequency, x is the position, and v is the velocity. A
time-dependent constant of motion for this system is a function K(x, v, ?)
which satisfies the following partial differential equation:
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This equation can be solved by the characteristics method (Sneddon, 1957),
where the equations for the characteristics (C; and C>) are

== 3

% —m®x 1 0

The general solution of equation (2) will be an arbitrary function of these
characteristics, K(x, v, ©) = G(Ci, C2). The first characteristics can be
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obtained by integrating the first two terms of (3), which brings about
the characteristic

Ci Zlmvz +l®2xz (4)
2 2
From this expression we obtain v = v (x, C), which can be used in equation
(3) together with the third term to obtain the second characteristic

2.2
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Note that the units of equations (4) and (5) are respectively “energy” and
“none.” Therefore, one can select as the general solution of (2) the following

K(x, v, 1) = G(i1(C1) - g2(C2)) (6)

where the functions g, g» and G are arbitrary. In particular, one may chose
the solution

K(x, v, 1) = sin(Cy)CY (7)

where #n is an arbitrary positive integer, i.e., the function K has the form
2
K(x, v, 1) = (%) (v + 0 )" 2 [@x cos(wf) — v sin(@)]  (8)

This family of explicitly time-dependent constants of motion already repre-
sents an ambiguity for determining the proper constant of motion of the
system (1).

3. RELATION BETWEEN CONSTANT OF MOTION AND
LAGRANGIAN

The relationship between Hamiltonians and Lagrangians is given by the
Legendre transformation vp — L = H, where p is called the generalized
linear momentum and is given by p = OL/Ov. The Lagrangian is a function
of x, vand t, L = L(x, v, f), and the Hamiltonian is a function of x, p and
t, H= H(x, p, t). If this transformation is seen as a function of (x, p, ), then
one needs to know v = v(x, p, f) and substitute it in this transformation. On
the other hand, seeing the Legendre transformation as a function of (x, v, ?),
one needs to substitute p = p(x, v, #). Doing this in the Hamiltonian, one
defines a new function K(x, v, ) = H(x, p(x, v, 1), ), and the Legendre
transformation can be seen as the following partial differential equation:
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which has the solution (Lopez and Hernandez, 1987)
" K
Lix, v, ) = A(x, ) v + vJ %ﬁd& (10)

The first term on the right side of equation (10) represents the “gauge” of
the Lagrangian and is the solution of the homogeneous equation associated
to (10) (K = 0), which can be ignored. (However, this term may have a
contribution to the Euler—Lagrange equations if 04/0t # 0). Now, taking the
total time derivative of (9), it follows that

Y dt Ov  Ox Ot dt

This equation and equation (10) form the foundation for understanding the
relationship between the constant of motion and Lagrangian.

A. If the function L represents the Lagrangian of the system, i.e., L
satisfies the Euler—Lagrange equation,

doL oL _

di ov  ox (122)

which generates the equations of motion, then from (11) it follows that

_ 0oL _dK

ot dt (12b)

Therefore, if 0L/0t is different from zero, the function K cannot be a constant
of motion. If OL/0¢ is equal to zero (so that L does not depend explicitly on
time), then the function K must be a constant of motion. But from equation
(10), this constant of motion cannot depend explicitly on time, otherwise the
Lagrangian would depend explicitly on time. So, one can say that explicitly
time-dependent Lagrangians yield functions K (Hamiltonians) which are not
constants of motion.

B. If the function L does not depend explicitly on time (OL/0t = 0),
equation (11) yields the equation

4OL_ oL _ d&
Y [dt ov 6x:| dt (12¢)

which indicates (for v # 0) that the function K is a constant of motion if
and only if the function L is the Lagrangian of the system, so equation (12a)
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is satisfied. Furthermore, due to equation (10), this constant of motion does
not depend on time. So, one can say that the explicitly time-independent
Lagrangian of the system brings about a function K (Hamiltonian) which is
a constant of motion.

C. If the function L depends explicitly on time (0L/0t # 0), then due
to equation (10), the function K must depend explicitly on time (OK/0r #
0). If this function K is a constant of motion (dK/dt = 0), then the function
L cannot be the Lagrangian of the system since equation (12a) is not satisfied.

The conclusions obtained from A-C point out that if one finds an
explicitly time-dependent constant of motion for the dynamical system, and
this is the function appearing on the right side of equation (9), then the
Lagrangian of the system must not exist, since a contradiction between
equations (10) and (11) would appear. Therefore, an explicitly time-dependent
constant of motion should not be used in equation (9) if the Lagrangian of
the system exists.

4. FUNCTION L FOR THE EXPLICITLY TIME-DEPENDENT
CONSTANT OF MOTION

Using the time-dependent constant of motion (8) into equation (10) gives
¢ v [§2 i 2]7!*1/2
L= (%) xv cos(mr) J gzx dé

(e e [

which can readily be integrated (Gradshteyn and Ryzhik, 1994), giving the
following expression:

L= (%) @xv cos(f)

2 2 2vn—12 &y -1
y {_ 0+ @ n =51 Qe ((DL)
X

v 8" 1 (n — 1)

2 2.2 _
+ V\/V + Ox (21’! 1) (v2 + mzxz)n,2
2n — 1)

"3on—=3)Qn—5) ...2n—2k—3) Qox)**"' 2 + mzxz)"k3:|}
+ ; e
< 8T m—2)(n—3)...(n—k—2)
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“ n—2 2k, 2 2 2\n—k—1/2 -
. . + _
- (%) vsm((Dl){Z (P E O —— | (237 + o'
o

2n—k) — 1
— (@x)* ! sinh™! (M)} (14q)
14
where n = 2, and the function sinh ™' (z) is defined as
sinh™! (z) = log (z + \Jz* + 1) (14b)

For n = 1, the function L is given by

2 2 2
[0 + o -
L =" 0 (01) [— - “~ 4 sinh~! (L)]
2 v Ox

— ™ Sin (01) [wz + ®’x? — ox sinh™! (%)] (15)

2

The functions (14a) and (15) do not represent the Lagrangian of the system (1)
since they do not satisfy the Euler—Lagrange equation (12a), but the equation

iﬁ_L_ﬁ_L]_ﬁ_L_

Y dt Ov  Ox ot

as can be readily demonstrated.

CONCLUSION

A family of time-dependent constants of motion is found, and the relation
between this type of constant of motion and the Lagrangians and Hamiltonians
was studied through the Legendre transformation and the Euler—Lagrange
equation. The results indicate that a well-defined time-dependent Lagrangian
(one for which the Euler—Lagrange equation and the Legendre transformation
are fully satisfied) cannot be found. However, one can find the explicitly time-
dependent function L, equations (14a) and (15), for the harmonic oscillator.
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